Logo des Repositoriums
 

Remember to Correct the Bias When Using Deep Learning for Regression!

dc.contributor.authorIgel, Christian
dc.contributor.authorOehmcke, Stefan
dc.date2023-03-01
dc.date.accessioned2023-08-11T12:28:53Z
dc.date.available2023-08-11T12:28:53Z
dc.date.issued2023
dc.description.abstractWhen training deep learning models for least-squares regression, we cannot expect that the training error residuals of the final model, selected after a fixed training time or based on performance on a hold-out data set, sum to zero. This can introduce a systematic error that accumulates if we are interested in the total aggregated performance over many data points (e.g., the sum of the residuals on previously unseen data). We suggest adjusting the bias of the machine learning model after training as a default post-processing step, which efficiently solves the problem. The severeness of the error accumulation and the effectiveness of the bias correction are demonstrated in exemplary experiments.de
dc.identifier.doi10.1007/s13218-023-00801-0
dc.identifier.issn1610-1987
dc.identifier.urihttp://dx.doi.org/10.1007/s13218-023-00801-0
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/41896
dc.publisherSpringer
dc.relation.ispartofKI - Künstliche Intelligenz: Vol. 37, No. 1
dc.relation.ispartofseriesKI - Künstliche Intelligenz
dc.subjectBias correction||Deep learning||Regression
dc.titleRemember to Correct the Bias When Using Deep Learning for Regression!de
dc.typeText/Journal Article
mci.reference.pages33-40

Dateien