Konferenzbeitrag

Fully parallel inference in Markov logic networks

Lade...
Vorschaubild
Volltext URI
Dokumententyp
Text/Conference Paper
Datum
2013
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Quelle
Datenbanksysteme für Business, Technologie und Web (BTW) 2026
Regular Research Papers
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
Markov logic is a powerful tool for handling the uncertainty that arises in real-world structured data; it has been applied successfully to a number of data management problems. In practice, the resulting ground Markov logic networks can get very large, which poses challenges to scalable inference. In this paper, we present the first fully parallelized approach to inference in Markov logic networks. Inference decomposes into a grounding step and a probabilistic inference step, both of which can be cost-intensive. We propose a parallel grounding algorithm that partitions the Markov logic network based on its corresponding join graph; each partition is ground independently and in parallel. Our partitioning scheme is based on importance sampling, which we use for parallel probabilistic inference, and is also well-suited to other, more efficient parallel inference techniques. Preliminary experiments suggest that significant speedup can be gained by parallelizing both grounding and probabilistic inference.
Beschreibung
Beedkar, Kaustubh; Corro, Luciano Del; Gemulla, Rainer (2013): Fully parallel inference in Markov logic networks. Datenbanksysteme für Business, Technologie und Web (BTW) 2026. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-608-4. pp. 205-224. Regular Research Papers. Magdeburg. 13.-15. März 2013
Schlagwörter
Zitierform
DOI
Tags