Logo des Repositoriums
 

Fully parallel inference in Markov logic networks

dc.contributor.authorBeedkar, Kaustubh
dc.contributor.authorCorro, Luciano Del
dc.contributor.authorGemulla, Rainer
dc.contributor.editorMarkl, Volker
dc.contributor.editorSaake, Gunter
dc.contributor.editorSattler, Kai-Uwe
dc.contributor.editorHackenbroich, Gregor
dc.contributor.editorMitschang, Bernhard
dc.contributor.editorHärder, Theo
dc.contributor.editorKöppen, Veit
dc.date.accessioned2018-10-24T09:56:18Z
dc.date.available2018-10-24T09:56:18Z
dc.date.issued2013
dc.description.abstractMarkov logic is a powerful tool for handling the uncertainty that arises in real-world structured data; it has been applied successfully to a number of data management problems. In practice, the resulting ground Markov logic networks can get very large, which poses challenges to scalable inference. In this paper, we present the first fully parallelized approach to inference in Markov logic networks. Inference decomposes into a grounding step and a probabilistic inference step, both of which can be cost-intensive. We propose a parallel grounding algorithm that partitions the Markov logic network based on its corresponding join graph; each partition is ground independently and in parallel. Our partitioning scheme is based on importance sampling, which we use for parallel probabilistic inference, and is also well-suited to other, more efficient parallel inference techniques. Preliminary experiments suggest that significant speedup can be gained by parallelizing both grounding and probabilistic inference.en
dc.identifier.isbn978-3-88579-608-4
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/17322
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDatenbanksysteme für Business, Technologie und Web (BTW) 2026
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-214
dc.titleFully parallel inference in Markov logic networksen
dc.typeText/Conference Paper
gi.citation.endPage224
gi.citation.publisherPlaceBonn
gi.citation.startPage205
gi.conference.date13.-15. März 2013
gi.conference.locationMagdeburg
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
205.pdf
Größe:
351.71 KB
Format:
Adobe Portable Document Format