Logo des Repositoriums
 

Code Smell Detection using Features from Version History

dc.contributor.authorEngeln, Ulrike
dc.contributor.editorHerrmann, Andrea
dc.date.accessioned2024-02-22T10:39:10Z
dc.date.available2024-02-22T10:39:10Z
dc.date.issued2023
dc.description.abstractCode smells are indicators for bad quality of source code. A well suited approach for the development of a smell detector are machine learning techniques that learn based on features, i.e., measurable properties of the software under investigation, e.g., code metrics. One major objective of our machine learning approach is to decide how to express information from the version history by features. we introduce a method to draw historical features that improve smell detection.en
dc.identifier.issn0720-8928
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/43665
dc.language.isoen
dc.pubPlaceBonn
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftwaretechnik-Trends Band 43, Heft 2
dc.relation.ispartofseriesSoftwaretechnik-Trends
dc.subjectcode smell
dc.subjectdetection
dc.subjectversion history
dc.subjectmachine learning
dc.subjectcode metrics
dc.titleCode Smell Detection using Features from Version Historyen
dc.typeText/Conference Paper
mci.conference.date44993
mci.conference.locationBad Honnef, Germany
mci.conference.sessiontitle25. Workshop Software-Reengineering und -Evolution der GI-Fachgruppe Software Reengineering (SRE)
mci.reference.pages38-39

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
14_Engeln.pdf
Größe:
81.62 KB
Format:
Adobe Portable Document Format