Logo des Repositoriums
 

Enhancing Chatbot-Assisted Study Program Orientation

dc.contributor.authorDieing, Thilo I.
dc.contributor.authorScheffler, Marc
dc.contributor.authorCohausz, Lea
dc.contributor.editorKiesler, Natalie
dc.contributor.editorSchulz, Sandra
dc.date.accessioned2024-10-21T10:40:35Z
dc.date.available2024-10-21T10:40:35Z
dc.date.issued2024
dc.description.abstractAs university dropout rates increase, implementing innovative solutions is crucial to reduce attrition. Aligning students’ interests with their study programs enhances academic success, satisfaction, and retention. This paper presents a novel approach using open-source Large Language Models (LLM) and Retrieval-Augmented Generation (RAG) to develop a semi-open-domain knowledge chatbot. The chatbot generates informed responses and recommendations to diverse student queries by retrieving relevant data while maintaining ethical standards and avoiding biased responses. When testing five model combinations on 70 prompts partially from real study advisors, results demonstrate that the RAG approach with the Mixtral LLM and RoBERTa embedding model offers superior performance. Our method for handling critical user prompts further indicates a significantly improved response quality. These findings advance service-oriented chatbots in education, aiming to reduce student attrition through accurate and helpful program recommendations.en
dc.identifier.doi10.18420/delfi2024-ws-32
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/45048
dc.language.isoen
dc.pubPlaceBonn
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofProceedings of DELFI Workshops 2024
dc.relation.ispartofseriesDELFI
dc.subjectchatbot
dc.subjectstudy program recommendation
dc.subjectLLM
dc.subjectRAG
dc.subjectCASPO
dc.titleEnhancing Chatbot-Assisted Study Program Orientationen
dc.typeText/Conference Paper
mci.conference.date09.-11. September 2024
mci.conference.locationFulda
mci.conference.sessiontitleDELFI: Workshop
mci.document.qualitydigidoc
mci.reference.pages223-240

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
03_dieing_enhancing.pdf
Größe:
343.36 KB
Format:
Adobe Portable Document Format