Logo des Repositoriums
 

On Coresets for Logistic Regression

dc.contributor.authorMunteanu, Alexander
dc.contributor.authorSchwiegelshohn, Chris
dc.contributor.authorSohler, Christian
dc.contributor.authorWoodruff, David P.
dc.contributor.editorDavid, Klaus
dc.contributor.editorGeihs, Kurt
dc.contributor.editorLange, Martin
dc.contributor.editorStumme, Gerd
dc.date.accessioned2019-08-27T12:55:23Z
dc.date.available2019-08-27T12:55:23Z
dc.date.issued2019
dc.description.abstractCoresets are one of the central methods to facilitate the analysis of large data.We continue a recent line of research applying the theory of coresets to logistic regression. First, we show the negative result that no strongly sublinear sized coresets exist for logistic regression. To deal with intractable worst-case instances we introduce a complexity measure µ(X), which quantifies the hardness of compressing a data set for logistic regression. µ(X) has an intuitive statistical interpretation that may be of independent interest. For data sets with bounded µ(X)-complexity, we show that a novel sensitivity sampling scheme produces the first provably sublinear (1 ± ")-coreset.en
dc.identifier.doi10.18420/inf2019_37
dc.identifier.isbn978-3-88579-688-6
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/24985
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-294
dc.subjectlogistic regression
dc.subjectcoresets
dc.subjectlower bounds
dc.subjectbeyond worst-case analysis
dc.titleOn Coresets for Logistic Regressionen
dc.typeText/Conference Paper
gi.citation.endPage268
gi.citation.publisherPlaceBonn
gi.citation.startPage267
gi.conference.date23.-26. September 2019
gi.conference.locationKassel
gi.conference.sessiontitleData Science

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper3_14.pdf
Größe:
77.01 KB
Format:
Adobe Portable Document Format