Logo des Repositoriums
 

D-VITA: A visual interactive text analysis system using dynamic topic mining

dc.contributor.authorGünnemann, Nikou
dc.contributor.editorSaake, Gunter
dc.contributor.editorHenrich, Andreas
dc.contributor.editorLehner, Wolfgang
dc.contributor.editorNeumann, Thomas
dc.contributor.editorKöppen, Veit
dc.date.accessioned2018-10-24T10:44:46Z
dc.date.available2018-10-24T10:44:46Z
dc.date.issued2013
dc.description.abstractRecent developments in web technologies like Web 2.0 have led to the generation of massive amounts of data. The rapid growth of data makes knowledge extraction and trend prediction a challenging task. A recent approach for the unsupervised analysis of text corpora is dynamic topic mining. While there is a growing interest in using this technique, interactive analysis systems for dynamic topic mining are still in an early stage. In this paper we present D-VITA, an interactive text analysis system that exploits dynamic topic mining to detect the latent topic structure and topic dynamics in a collection of documents. D-VITA supports end-users in understanding and exploiting the topic mining results, in visualizing the topic dynamics within document collections, and in browsing of documents based on shared topics. We present an application case for a scientific community that uses an instance of D-VITA for trend analysis in their data sources.en
dc.identifier.isbn978-3-88579-610-7
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/17438
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDatenbanksysteme für Business, Technologie und Web (BTW) 2013 - Workshopband
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-216
dc.titleD-VITA: A visual interactive text analysis system using dynamic topic miningen
dc.typeText/Conference Paper
gi.citation.endPage246
gi.citation.publisherPlaceBonn
gi.citation.startPage237
gi.conference.date11.-12. März 2013
gi.conference.locationMagdeburg
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
237.pdf
Größe:
296.01 KB
Format:
Adobe Portable Document Format