Logo des Repositoriums
 

Code Smell Detection using Features from Version History

dc.contributor.authorEngeln, Ulrike
dc.contributor.editorDhungana, Deepak
dc.contributor.editorLambers, Leen
dc.contributor.editorBonorden, Leif
dc.contributor.editorHenning, Sören
dc.date.accessioned2024-02-14T05:22:29Z
dc.date.available2024-02-14T05:22:29Z
dc.date.issued2024
dc.description.abstractCode smells are indicators of bad quality in software. There exist several detection techniques for smells, which mainly base on static properties of the source code. Those detectors usually show weak performance in detection of context-sensitive smells since static properties hardly capture information about relations in the code. To address this information gap, we propose a strategy to extract information about interdependencies from version history. We use static and the new historical features to identify code smells by a random forest. Experiments show that the introduced historical features improve detection of code smells that focus on interdependencies.en
dc.identifier.doi10.18420/sw2024-ws_13
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/43510
dc.language.isoen
dc.pubPlaceBonn
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSE 2024 - Companion
dc.subjectcode smells detection
dc.subjectmachine learning
dc.subjectmining sofware repositories
dc.titleCode Smell Detection using Features from Version Historyen
dc.typeText/Conference Paper
gi.citation.endPage174
gi.citation.startPage173
gi.conference.date26.- 27. Februar
gi.conference.locationLinz
gi.conference.sessiontitleSRC

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
B1-2.pdf
Größe:
135.39 KB
Format:
Adobe Portable Document Format