Textdokument

Revisiting the privacy of censored credentials

Vorschaubild nicht verfügbar
Volltext URI
Dokumententyp
Datum
2022
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Quelle
INFORMATIK 2022
International Workshop On Digital Forensics (IWDF)
Verlag
Gesellschaft für Informatik, Bonn
Zusammenfassung
On the internet, you find numerous images like screenshots where secret parts are hidden with irreversible redaction techniques like pixelation or blurring. In this paper, we propose a system that recovers information from redacted text in raster graphics using a composition of a Convolutional Neural Network (CNN), a Recurrent Neural Network (RNN) using Long short-term memory (LSTM) and a Connectionist Temporal Classification (CTC) layer to output the most probable character sequence. We furthermore show that our model operates in an automated pipeline, performs on blurred images without modification and is even able to compensate JPEG quality loss. Finally, our test results indicate that a generic neural network can be trained successfully to assist the recovery of pixelized or blurred information on screenshots or high-quality photos.
Beschreibung
Garske,Viktor; Noack,Andreas (2022): Revisiting the privacy of censored credentials. INFORMATIK 2022. DOI: 10.18420/inf2022_04. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-720-3. pp. 59-70. International Workshop On Digital Forensics (IWDF). Hamburg. 26.-30. September 2022
Zitierform
Tags