Logo des Repositoriums
 
Textdokument

Revisiting the privacy of censored credentials

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2022

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

On the internet, you find numerous images like screenshots where secret parts are hidden with irreversible redaction techniques like pixelation or blurring. In this paper, we propose a system that recovers information from redacted text in raster graphics using a composition of a Convolutional Neural Network (CNN), a Recurrent Neural Network (RNN) using Long short-term memory (LSTM) and a Connectionist Temporal Classification (CTC) layer to output the most probable character sequence. We furthermore show that our model operates in an automated pipeline, performs on blurred images without modification and is even able to compensate JPEG quality loss. Finally, our test results indicate that a generic neural network can be trained successfully to assist the recovery of pixelized or blurred information on screenshots or high-quality photos.

Beschreibung

Garske,Viktor; Noack,Andreas (2022): Revisiting the privacy of censored credentials. INFORMATIK 2022. DOI: 10.18420/inf2022_04. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-720-3. pp. 59-70. International Workshop On Digital Forensics (IWDF). Hamburg. 26.-30. September 2022

Zitierform

Tags