Logo des Repositoriums
 

Revisiting the privacy of censored credentials

dc.contributor.authorGarske,Viktor
dc.contributor.authorNoack,Andreas
dc.contributor.editorDemmler, Daniel
dc.contributor.editorKrupka, Daniel
dc.contributor.editorFederrath, Hannes
dc.date.accessioned2022-09-28T17:10:28Z
dc.date.available2022-09-28T17:10:28Z
dc.date.issued2022
dc.description.abstractOn the internet, you find numerous images like screenshots where secret parts are hidden with irreversible redaction techniques like pixelation or blurring. In this paper, we propose a system that recovers information from redacted text in raster graphics using a composition of a Convolutional Neural Network (CNN), a Recurrent Neural Network (RNN) using Long short-term memory (LSTM) and a Connectionist Temporal Classification (CTC) layer to output the most probable character sequence. We furthermore show that our model operates in an automated pipeline, performs on blurred images without modification and is even able to compensate JPEG quality loss. Finally, our test results indicate that a generic neural network can be trained successfully to assist the recovery of pixelized or blurred information on screenshots or high-quality photos.en
dc.identifier.doi10.18420/inf2022_04
dc.identifier.isbn978-3-88579-720-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39539
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-326
dc.subjectNeural networks
dc.subjectprivacy
dc.subjectmachine learning
dc.subjectcomputer vision
dc.subjectpassword
dc.subjectcredentials
dc.subjectpixelized
dc.titleRevisiting the privacy of censored credentialsen
gi.citation.endPage70
gi.citation.startPage59
gi.conference.date26.-30. September 2022
gi.conference.locationHamburg
gi.conference.sessiontitleInternational Workshop On Digital Forensics (IWDF)

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
iwdf_04.pdf
Größe:
259.93 KB
Format:
Adobe Portable Document Format