Towards Sustainable Machine Learning: Analyzing Energy-Efficient Algorithmic Strategies for Environmental Sensor Data
dc.contributor.author | Cetkin, Berkay | |
dc.contributor.author | Begic Fazlic, Lejla | |
dc.contributor.author | Guldner, Achim | |
dc.contributor.author | Naumann, Stefan | |
dc.contributor.author | Dartmann, Guido | |
dc.contributor.editor | Klein, Maike | |
dc.contributor.editor | Krupka, Daniel | |
dc.contributor.editor | Winter, Cornelia | |
dc.contributor.editor | Gergeleit, Martin | |
dc.contributor.editor | Martin, Ludger | |
dc.date.accessioned | 2024-10-21T18:24:11Z | |
dc.date.available | 2024-10-21T18:24:11Z | |
dc.date.issued | 2024 | |
dc.description.abstract | This study evaluates the energy efficiency of machine learning (ML) classification models across 49 test setups, each representing different conditions derived from a set of scenarios. Utilizing internet of things (IoT) technology with an ESP8266 microcontroller, we collected and analyzed environmental data including temperature, humidity, and CO2 levels from a simulated room environment. We measured energy consumption for data preprocessing, model training, and testing, alongside energy efficiency metrics that consider output, processing time, and F1 score. The study also performed correlation analyses to explore the relationship between energy consumption and performance metrics. Furthermore, it assessed the trade-offs between accuracy and energy efficiency by comparing an ensemble model to its constituent algorithms. The measurements, conducted according to the Green Software Measurement Model (GSMM), provide essential insights into selecting energy-efficient algorithms for a broad spectrum of IoT applications. | en |
dc.identifier.doi | 10.18420/inf2024_102 | |
dc.identifier.eissn | 2944-7682 | |
dc.identifier.isbn | 978-3-88579-746-3 | |
dc.identifier.issn | 2944-7682 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/45073 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik e.V. | |
dc.relation.ispartof | INFORMATIK 2024 | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-352 | |
dc.subject | Algorithmic Optimization | |
dc.subject | Energy Efficiency | |
dc.subject | Internet of Things | |
dc.subject | Machine Learning | |
dc.title | Towards Sustainable Machine Learning: Analyzing Energy-Efficient Algorithmic Strategies for Environmental Sensor Data | en |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 1164 | |
gi.citation.publisherPlace | Bonn | |
gi.citation.startPage | 1155 | |
gi.conference.date | 24.-26. September 2024 | |
gi.conference.location | Wiesbaden | |
gi.conference.sessiontitle | 5. Workshop "KI in der Umweltinformatik" (KIU-2024) |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- Cetkin_et_al_Towards_Sustainable_Machine_Learning.pdf
- Größe:
- 13.8 MB
- Format:
- Adobe Portable Document Format