Logo des Repositoriums
 

A New Approach for Automated Feature Selection

dc.contributor.authorGocht, Andreas
dc.contributor.authorLehmann, Christoph
dc.contributor.authorSchöne, Robert
dc.contributor.editorDavid, Klaus
dc.contributor.editorGeihs, Kurt
dc.contributor.editorLange, Martin
dc.contributor.editorStumme, Gerd
dc.date.accessioned2019-08-27T12:55:25Z
dc.date.available2019-08-27T12:55:25Z
dc.date.issued2019
dc.identifier.doi10.18420/inf2019_42
dc.identifier.isbn978-3-88579-688-6
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/24991
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-294
dc.subjectData mining
dc.subjectFeature selection
dc.subjectMutual information
dc.titleA New Approach for Automated Feature Selectionen
dc.typeText/Conference Paper
gi.citation.endPage278
gi.citation.publisherPlaceBonn
gi.citation.startPage277
gi.conference.date23.-26. September 2019
gi.conference.locationKassel
gi.conference.sessiontitleData Science

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper3_19.pdf
Größe:
77.12 KB
Format:
Adobe Portable Document Format