Logo des Repositoriums
 

Evaluating Face Image Quality Score Fusion for Modern Deep Learning Models

dc.contributor.authorSchlett, Torsten
dc.contributor.authorRathgeb, Christian
dc.contributor.authorTapia, Juan E.
dc.contributor.authorBusch, Christoph
dc.contributor.editorBrömme, Arslan
dc.contributor.editorDamer, Naser
dc.contributor.editorGomez-Barrero, Marta
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorSequeira Ana F.
dc.contributor.editorTodisco, Massimiliano
dc.contributor.editorUhl, Andreas
dc.date.accessioned2022-10-27T10:19:31Z
dc.date.available2022-10-27T10:19:31Z
dc.date.issued2022
dc.description.abstractFace image quality assessment algorithms attempt to estimate the utility of face images for biometric systems, typically face recognition, since the performance of these systems can be limited by the image quality. Hand-crafted quality score fusion has previously been examined for a variety of mostly factor-specific quality assessment algorithms. This paper instead examines score fusion for various recent “monolithic” quality assessment deep learning models. The evaluation methodology is based on Error-versus-Reject-Characteristic partial-Area-Under-Curve values, which are used to quantitatively rank quality assessment configurations in a face recognition context. Mean quality score fusion configurations were found to slightly improve performance on the TinyFace database, while the tested fusion types were ineffective on the LFW database.en
dc.identifier.doi10.1109/BIOSIG55365.2022.9897032
dc.identifier.isbn978-3-88579-723-4
dc.identifier.pissn1617-5499
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39710
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-329
dc.subjectBiometrics
dc.subjectface image quality assessment
dc.subjectfusion
dc.subjectface recognition
dc.titleEvaluating Face Image Quality Score Fusion for Modern Deep Learning Modelsen
dc.typeText/Conference Paper
gi.citation.endPage308
gi.citation.publisherPlaceBonn
gi.citation.startPage301
gi.conference.date14.-16. September 2022
gi.conference.locationDarmstadt
gi.conference.sessiontitleFurther Conference Contributions

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
32-BIOSIG_2022_paper_3.pdf
Größe:
873.07 KB
Format:
Adobe Portable Document Format