Logo des Repositoriums
 
Zeitschriftenartikel

Energy-aware mixed precision iterative refinement for linear systems on GPU-accelerated multi-node HPC clusters

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Journal Article

Zusatzinformation

Datum

2015

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V., Fachgruppe PARS

Zusammenfassung

Modern high-performance computing systems are often built as a cluster of interconnected compute nodes, where each node is built upon a hybrid hardware stack of multi-core processors and many-core accelerators. To efficiently use such systems, numerical methods must embrace the different levels of parallelism from the coarse-grained distributed memory cluster level to the fine-grained shared memory node level parallelism. Synchronization requirements of numerical methods may diminish parallel performance and result in increased energy consumption. We investigate block-asynchronous iteration methods in combination with mixed precision iterative refinement to address this issue. We depict our implementation for multi-node distributed systems using MPI with a hybrid node level parallelization for multi-core CPUs using OpenMP and multiple CUDAcapable accelerators. Our numerical experiments are based on a linear system arising from the finite element discretization of the Poisson equation. We present energy and runtime measurements for a quad-CPU and dual-GPU test system. We achieve runtime and energy savings of up to 70% for block-asynchronous GPU-accelerated iteration using mixed precision compared to CPU-only computation. We also encounter configurations where the CPU-only computation is advantageous over the GPU-accelerated method.

Beschreibung

Wlotzka, Martin; Heuveline, Vincent (2015): Energy-aware mixed precision iterative refinement for linear systems on GPU-accelerated multi-node HPC clusters. PARS-Mitteilungen: Vol. 32, Nr. 1. Berlin: Gesellschaft für Informatik e.V., Fachgruppe PARS. PISSN: 0177-0454

Schlagwörter

Zitierform

DOI

Tags