Teaching Machine Learning and Data Literacy to Students of Logistics using Jupyter Notebooks
dc.contributor.author | Kastner, Marvin | |
dc.contributor.author | Franzkeit, Janna | |
dc.contributor.author | Lainé, Anna | |
dc.contributor.editor | Zender, Raphael | |
dc.contributor.editor | Ifenthaler, Dirk | |
dc.contributor.editor | Leonhardt, Thiemo | |
dc.contributor.editor | Schumacher, Clara | |
dc.date.accessioned | 2020-09-08T09:46:28Z | |
dc.date.available | 2020-09-08T09:46:28Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Teaching machine learning in fields outside of computer sciences can be challenging when the students do not have a solid code knowledge. In this work, the requirements for teaching data literacy and code literacy to students of logistics are explored. Specifically, the use of Jupyter Notebooks in a machine learning course for students in logistics is evaluated, using “Teaching and Learning with Jupyter” written by Barba et al. in 2019 that lists several teaching patterns for Jupyter Notebooks. | en |
dc.identifier.isbn | 978-3-88579-702-9 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/34190 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik e.V. | |
dc.relation.ispartof | DELFI 2020 – Die 18. Fachtagung Bildungstechnologien der Gesellschaft für Informatik e.V. | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-308 | |
dc.subject | Jupyter Notebooks | |
dc.subject | Code Literacy | |
dc.subject | Data Literacy | |
dc.subject | Machine Learning | |
dc.subject | Data Science | |
dc.subject | Logistics | |
dc.subject | Supply Chain | |
dc.title | Teaching Machine Learning and Data Literacy to Students of Logistics using Jupyter Notebooks | en |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 366 | |
gi.citation.publisherPlace | Bonn | |
gi.citation.startPage | 365 | |
gi.conference.date | 14.-18. September 2020 | |
gi.conference.location | Online |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- 365 DELFI2020_paper_35.pdf
- Größe:
- 112.27 KB
- Format:
- Adobe Portable Document Format