Logo des Repositoriums
 
Textdokument

Using FALCES against bias in automated decisions by integrating fairness in dynamic model ensembles

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2021

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Quelle

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

As regularly reported in the media, automated classifications and decisions based on machine learning models can cause unfair treatment of certain groups of a general population. Classically, the machine learning models are designed to make highly accurate decisions in general. When one machine learning model is not sufficient to define the possibly complex boundary between classes, multiple specialized" models are used within a model ensemble to further boost accuracy. In particular

Beschreibung

Lässig, Nico; Oppold, Sarah; Herschel, Melanie (2021): Using FALCES against bias in automated decisions by integrating fairness in dynamic model ensembles. BTW 2021. DOI: 10.18420/btw2021-08. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-705-0. pp. 155-174. ML & Data Science. Dresden. 13.-17. September 2021

Zitierform

Tags