Logo des Repositoriums
 

Schema extraction and structural outlier detection for JSON-based nosql data stores

dc.contributor.authorKlettke, Meike
dc.contributor.authorStörl, Uta
dc.contributor.authorScherzinger, Stefanie
dc.contributor.editorSeidl, Thomas
dc.contributor.editorRitter, Norbert
dc.contributor.editorSchöning, Harald
dc.contributor.editorSattler, Kai-Uwe
dc.contributor.editorHärder, Theo
dc.contributor.editorFriedrich, Steffen
dc.contributor.editorWingerath, Wolfram
dc.date.accessioned2017-06-30T11:40:46Z
dc.date.available2017-06-30T11:40:46Z
dc.date.issued2015
dc.description.abstractAlthough most NoSQL Data Stores are schema-less, information on the structural properties of the persisted data is nevertheless essential during application development. Otherwise, accessing the data becomes simply impractical. In this paper, we introduce an algorithm for schema extraction that is operating outside of the NoSQL data store. Our method is specifically targeted at semi-structured data persisted in NoSQL stores, e.g., in JSON format. Rather than designing the schema up front, extracting a schema in hindsight can be seen as a reverse-engineering step. Based on the extracted schema information, we propose set of similarity measures that capture the degree of heterogeneity of JSON data and which reveal structural outliers in the data. We evaluate our implementation on two real-life datasets: a database from the Wendelstein 7-X project and Web Performance Data.en
dc.identifier.isbn978-3-88579-635-0
dc.identifier.pissn1617-5468
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDatenbanksysteme für Business, Technologie und Web (BTW 2015)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-241
dc.titleSchema extraction and structural outlier detection for JSON-based nosql data storesen
dc.typeText/Conference Paper
gi.citation.endPage444
gi.citation.publisherPlaceBonn
gi.citation.startPage425
gi.conference.date2.-3. März 2015
gi.conference.locationHamburg

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
425.pdf
Größe:
1000.34 KB
Format:
Adobe Portable Document Format