Logo des Repositoriums
 

Sustainable Automated 3D Scanning: Energy-Efficient Drone Photogrammetry for Large Scale Archaeological Sites

dc.contributor.authorKamil, Ahmed
dc.contributor.authorMahmood, Basim
dc.contributor.editorKlein, Maike
dc.contributor.editorKrupka, Daniel
dc.contributor.editorWinter, Cornelia
dc.contributor.editorGergeleit, Martin
dc.contributor.editorMartin, Ludger
dc.date.accessioned2024-10-21T18:24:31Z
dc.date.available2024-10-21T18:24:31Z
dc.date.issued2024
dc.description.abstractThis work proposes a sustainable automated 3D scanning algorithm using drone photogrammetry for large scale archaeological sites. The proposed algorithm is energy-aware and sustainable since it uses an efficient path planning approach. It combines boustrophedon and spiral drone path planning algorithms. Moreover, concepts inspired by complex networks are also involved to model the environment as a network model with nodes and edges. The generated model is utilized in the proposed path planning algorithm. The findings show that the proposed algorithm is highly feasible and can efficiently scan large scale areas with minimum energy and time without human intervention.en
dc.identifier.doi10.18420/inf2024_82
dc.identifier.isbn978-3-88579-746-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/45246
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2024
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-352
dc.subjectPhotogrammetry
dc.subject3D Scanning
dc.subjectCultural Heritage Preservation
dc.subjectEnergy-Aware
dc.subjectDrone Path Planning
dc.titleSustainable Automated 3D Scanning: Energy-Efficient Drone Photogrammetry for Large Scale Archaeological Sitesen
dc.typeText/Conference Paper
gi.citation.endPage932
gi.citation.publisherPlaceBonn
gi.citation.startPage927
gi.conference.date24.-26. September 2024
gi.conference.locationWiesbaden
gi.conference.sessiontitleDigitalization of Cultural Heritage / DOCH

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
Kamil_Mahmood_Sustainable_Automated_3D_Scanning.pdf
Größe:
727.29 KB
Format:
Adobe Portable Document Format