Logo des Repositoriums
 

Personalized Complementarity in Human-AI Collaboration

dc.contributor.authorBreckner, Karin
dc.contributor.authorNeumayr, Thomas
dc.contributor.authorStreit, Marc
dc.contributor.authorAugstein, Mirjam
dc.date.accessioned2024-08-21T11:08:40Z
dc.date.available2024-08-21T11:08:40Z
dc.date.issued2024
dc.description.abstractUncertainty and the potential for complementarity between humans and AI have shaped a new kind of interaction, typically referred to as a collaborative relationship. In this paper, we pick up on the discussion of common issues in human-AI collaboration based on a literature review and further discuss ways to and challenges of personalized complementarity in human-AI relations. We hypothesize that a combination of reciprocal, mixed-initiative communication may support up-to-date mental models and therefore strengthen appropriate trust and reliance, ultimately leading to a higher chance of effectively exploiting existing complementarity potentials.en
dc.identifier.doi10.18420/muc2024-mci-ws11-206
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/44342
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofMensch und Computer 2024 - Workshopband
dc.relation.ispartofseriesMensch und Computer
dc.rightshttp://purl.org/eprint/accessRights/RestrictedAccess
dc.rights.urihttp://purl.org/eprint/accessRights/RestrictedAccess
dc.titlePersonalized Complementarity in Human-AI Collaborationen
dc.typeText/Workshop Paper
gi.conference.date1.-4. September 2024
gi.conference.locationKarlsruhe
gi.conference.sessiontitleMCI-WS11: ABIS 2024 - International Workshop on Personalization and Recommendation

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
muc2024-mci-ws11-206.pdf
Größe:
392.44 KB
Format:
Adobe Portable Document Format