Logo des Repositoriums
 
Textdokument

Spatial Interpolation of Air Quality Data with Multidimensional Gaussian Processes

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2021

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

The central question of this paper is whether interpolation techniques applied to a distributed sensor network can indeed provide more information than using the constant background of an urban reference station to measure air pollution. We compare different interpolation techniques based on temporal-spatial machine learning in terms of their applicability for correctly predicting personal exposure. Using a dataset of stationary low-cost sensors, we estimate exposure on a route through the city and compare it to mobile measurements. The results show that while different machine learning-based interpolation methods yield quite different results, validation of machine learning-based approaches is still challenging.

Beschreibung

Tremper, Paul; Till Riedel; Budde, Matthias (2021): Spatial Interpolation of Air Quality Data with Multidimensional Gaussian Processes. INFORMATIK 2021. DOI: 10.18420/informatik2021-022. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-708-1. pp. 269-286. 2. Workshop Künstliche Intelligenz in der Umweltinformatik (KIUI-2021). Berlin. 27. September - 1. Oktober 2021

Zitierform

Tags