Logo des Repositoriums
 

Spatial Interpolation of Air Quality Data with Multidimensional Gaussian Processes

dc.contributor.authorTremper, Paul
dc.contributor.authorTill Riedel
dc.contributor.authorBudde, Matthias
dc.date.accessioned2021-12-14T10:57:18Z
dc.date.available2021-12-14T10:57:18Z
dc.date.issued2021
dc.description.abstractThe central question of this paper is whether interpolation techniques applied to a distributed sensor network can indeed provide more information than using the constant background of an urban reference station to measure air pollution. We compare different interpolation techniques based on temporal-spatial machine learning in terms of their applicability for correctly predicting personal exposure. Using a dataset of stationary low-cost sensors, we estimate exposure on a route through the city and compare it to mobile measurements. The results show that while different machine learning-based interpolation methods yield quite different results, validation of machine learning-based approaches is still challenging.en
dc.identifier.doi10.18420/informatik2021-022
dc.identifier.isbn978-3-88579-708-1
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/37685
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2021
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-314
dc.subjectAir Quality
dc.subjectGaussian Process Regression
dc.subjectValidation
dc.titleSpatial Interpolation of Air Quality Data with Multidimensional Gaussian Processesen
gi.citation.endPage286
gi.citation.startPage269
gi.conference.date27. September - 1. Oktober 2021
gi.conference.locationBerlin
gi.conference.sessiontitle2. Workshop Künstliche Intelligenz in der Umweltinformatik (KIUI-2021)

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
B1-5.pdf
Größe:
2.58 MB
Format:
Adobe Portable Document Format