Logo des Repositoriums
 
Zeitschriftenartikel

Feature-aware forecasting of large-scale time series data sets

Vorschaubild nicht verfügbar

Volltext URI

Dokumententyp

Text/Journal Article

Zusatzinformation

Datum

2020

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

De Gruyter

Zusammenfassung

The Internet of Things (IoT) sparks a revolution in time series forecasting. Traditional techniques forecast time series individually, which becomes unfeasible when the focus changes to thousands of time series exhibiting anomalies like noise and missing values. This work presents CSAR, a technique forecasting a set of time series with only one model, and a feature-aware partitioning applying CSAR on subsets of similar time series. These techniques provide accurate forecasts a hundred times faster than traditional techniques, preparing forecasting for the arising challenges of the IoT era.

Beschreibung

Hartmann, Claudio; Kegel, Lars; Lehner, Wolfgang (2020): Feature-aware forecasting of large-scale time series data sets. it - Information Technology: Vol. 62, No. 3-4. DOI: 10.1515/itit-2019-0035. Berlin: De Gruyter. PISSN: 2196-7032. pp. 157-168

Zitierform

Tags