Logo des Repositoriums
 

Feature-aware forecasting of large-scale time series data sets

dc.contributor.authorHartmann, Claudio
dc.contributor.authorKegel, Lars
dc.contributor.authorLehner, Wolfgang
dc.date.accessioned2021-06-21T09:38:45Z
dc.date.available2021-06-21T09:38:45Z
dc.date.issued2020
dc.description.abstractThe Internet of Things (IoT) sparks a revolution in time series forecasting. Traditional techniques forecast time series individually, which becomes unfeasible when the focus changes to thousands of time series exhibiting anomalies like noise and missing values. This work presents CSAR, a technique forecasting a set of time series with only one model, and a feature-aware partitioning applying CSAR on subsets of similar time series. These techniques provide accurate forecasts a hundred times faster than traditional techniques, preparing forecasting for the arising challenges of the IoT era.en
dc.identifier.doi10.1515/itit-2019-0035
dc.identifier.pissn2196-7032
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/36568
dc.language.isoen
dc.publisherDe Gruyter
dc.relation.ispartofit - Information Technology: Vol. 62, No. 3-4
dc.subjectData Analytics
dc.subjectTime Series Forecasting
dc.subjectBig Data
dc.subjectIoT
dc.titleFeature-aware forecasting of large-scale time series data setsen
dc.typeText/Journal Article
gi.citation.endPage168
gi.citation.publisherPlaceBerlin
gi.citation.startPage157

Dateien