Logo des Repositoriums
 

Anomaly Detection in Supermarket Refrigeration Systems using Transformer Models: A Comparative Study

dc.contributor.authorMeyer, Melina
dc.contributor.authorGergeleit, Martin
dc.contributor.authorKrechel, Dirk
dc.contributor.editorKlein, Maike
dc.contributor.editorKrupka, Daniel
dc.contributor.editorWinter, Cornelia
dc.contributor.editorGergeleit, Martin
dc.contributor.editorMartin, Ludger
dc.date.accessioned2024-10-21T18:24:13Z
dc.date.available2024-10-21T18:24:13Z
dc.date.issued2024
dc.description.abstractThis study investigates anomaly detection methods in supermarket refrigeration systems. A transformer-based model is introduced in this field and compared with LSTM autoencoders. The models are trained and evaluated using preprocessed refrigeration data, with parameters optimized for accuracy, recall, precision, and F1 score. Our findings aim to enhance system monitoring and maintenance strategies, ultimately improving reliability, energy efficiency, and operational excellence in supermarket refrigeration technology.en
dc.identifier.doi10.18420/inf2024_119
dc.identifier.eissn2944-7682
dc.identifier.isbn978-3-88579-746-3
dc.identifier.issn2944-7682
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/45091
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2024
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-352
dc.subjectAnomaly Detection
dc.subjectTransformer
dc.subjectTime Series Analysis
dc.subjectIndustrial Use Case
dc.titleAnomaly Detection in Supermarket Refrigeration Systems using Transformer Models: A Comparative Studyen
dc.typeText/Conference Paper
gi.citation.endPage1369
gi.citation.publisherPlaceBonn
gi.citation.startPage1359
gi.conference.date24.-26. September 2024
gi.conference.locationWiesbaden
gi.conference.sessiontitleAI@WORK

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
Meyer_et_al_Anomaly_Detection.pdf
Größe:
424.12 KB
Format:
Adobe Portable Document Format