Logo des Repositoriums
 
Textdokument

Unification of Algorithms for Quantification and Unfolding

Vorschaubild nicht verfügbar

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2022

Autor:innen

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

Quantification is the supervised learning task of predicting the prevalences of classes in a data sample. Physics literature knows the same task under a different name: unfolding. However, the literature on quantification and the literature on unfolding are largely disconnected from each other. We bridge this interdisciplinary gap by proposing a common framework that integrates algorithms from both fields in a unified form. Instantiations of our framework differ from each other in terms of the loss functions, the regularizers, and the feature transformations they employ.

Beschreibung

Bunse,Mirko (2022): Unification of Algorithms for Quantification and Unfolding. INFORMATIK 2022. DOI: 10.18420/inf2022_37. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-720-3. pp. 459-468. Workshop on Machine Learning for Astroparticle Physics and Astronomy (ml.astro). Hamburg. 26.-30. September 2022

Zitierform

Tags