Logo des Repositoriums
 

Unification of Algorithms for Quantification and Unfolding

dc.contributor.authorBunse,Mirko
dc.contributor.editorDemmler, Daniel
dc.contributor.editorKrupka, Daniel
dc.contributor.editorFederrath, Hannes
dc.date.accessioned2022-09-28T17:10:26Z
dc.date.available2022-09-28T17:10:26Z
dc.date.issued2022
dc.description.abstractQuantification is the supervised learning task of predicting the prevalences of classes in a data sample. Physics literature knows the same task under a different name: unfolding. However, the literature on quantification and the literature on unfolding are largely disconnected from each other. We bridge this interdisciplinary gap by proposing a common framework that integrates algorithms from both fields in a unified form. Instantiations of our framework differ from each other in terms of the loss functions, the regularizers, and the feature transformations they employ.en
dc.identifier.doi10.18420/inf2022_37
dc.identifier.isbn978-3-88579-720-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39536
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-326
dc.subjectQuantification
dc.subjectUnfolding
dc.subjectClassification
dc.subjectExperimental physics
dc.subjectMachine learning
dc.titleUnification of Algorithms for Quantification and Unfoldingen
gi.citation.endPage468
gi.citation.startPage459
gi.conference.date26.-30. September 2022
gi.conference.locationHamburg
gi.conference.sessiontitleWorkshop on Machine Learning for Astroparticle Physics and Astronomy (ml.astro)

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
mlastro_01.pdf
Größe:
131.98 KB
Format:
Adobe Portable Document Format