Logo des Repositoriums
 

Latent representations of transaction network graphs in continuous vector spaces as features for money laundering detection

dc.contributor.authorWagner, Dominik
dc.contributor.editorBecker, Michael
dc.date.accessioned2019-10-14T12:09:09Z
dc.date.available2019-10-14T12:09:09Z
dc.date.issued2019
dc.description.abstractThis paper explores the construction of network graphs from a large ban ktransaction dataset and draws from Ąndings in language modeling and unsupervised learning to transform these graphs into multidimensional vector representations. Such latent representations encode relationships and community structures within the transaction network. Three classiĄers with varying complexity are trained on these latent representations to detect suspicious behavior with respect to money laundering. The specific challenges accompanying highly imbalanced classes are discussed as well and two strategies to overcome these challenges are compared.en
dc.identifier.isbn978-3-88579-449-3
dc.identifier.pissn1614-3213
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/28992
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSKILL 2019 - Studierendenkonferenz Informatik
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Seminars, Volume S-15
dc.subjectfeature learning
dc.subjectgraph embeddings
dc.subjectlatent representations
dc.subjectDeepWalk
dc.subjectanti-money laundering
dc.subjectlanguage modeling
dc.subjectclass imbalances
dc.subjectSMOTE
dc.subjectmachine learning
dc.subjectsupport vector machine
dc.subjectnaive bayes
dc.subjectmultilayer perceptron
dc.titleLatent representations of transaction network graphs in continuous vector spaces as features for money laundering detectionen
dc.typeText/Conference Paper
gi.citation.endPage154
gi.citation.publisherPlaceBonn
gi.citation.startPage143
gi.conference.date25.-26. September 2019
gi.conference.locationKassel
gi.conference.sessiontitleSecurity

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
SKILL2019-12.pdf
Größe:
3.34 MB
Format:
Adobe Portable Document Format