Logo des Repositoriums
 

Real-world application benchmark for QAOA algorithm for an electromobility use case

dc.contributor.authorFederer,Marika
dc.contributor.authorMüssig,Daniel
dc.contributor.authorLenk,Steve
dc.contributor.authorLässig,Jörg
dc.contributor.editorDemmler, Daniel
dc.contributor.editorKrupka, Daniel
dc.contributor.editorFederrath, Hannes
dc.date.accessioned2022-09-28T17:11:03Z
dc.date.available2022-09-28T17:11:03Z
dc.date.issued2022
dc.description.abstractTo reduce $CO_2$ emissions in the mobility sector, battery electric service vehicles might play an important role in the future. Here, an optimal charging scheduling use case will be presented which includes local solar power generation for minimizing the power grid usage for electric service vehicles. Different formulations of the use case are given to illustrate the differences for classical and quantum-based optimization using a mixed integer linear program and a quadratic unconstrained binary optimization program, respectively. Addtionally, we study the complexity of our benchmark experiments by characterizing the respective QUBO matrices and the optimization landscapes. It is shown how the setting of the parameters of a certain experiment and its penalty function influences the complexity for a quantum-based optimizer. Additionally, we present a comparison of the computing times and summarize the current state of gate-based quantum computing for electromobility.en
dc.identifier.doi10.18420/inf2022_97
dc.identifier.isbn978-3-88579-720-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39602
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-326
dc.subjectQAOA
dc.subjectElectromobility
dc.subjectQuantum Computing
dc.subjectEnergy
dc.titleReal-world application benchmark for QAOA algorithm for an electromobility use caseen
gi.citation.endPage1151
gi.citation.startPage1145
gi.conference.date26.-30. September 2022
gi.conference.locationHamburg
gi.conference.sessiontitleGI Quantum Computing Workshop

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
giquantum_04.pdf
Größe:
967.74 KB
Format:
Adobe Portable Document Format