Logo des Repositoriums
 

Algorithmic Learning: Formal models and prototypical applications

dc.contributor.authorLange, Steffen
dc.contributor.authorZilles, Sandra
dc.contributor.editorJantke, Klaus P.
dc.contributor.editorFähnrich, Klaus-Peter
dc.contributor.editorWittig, Wolfgang S.
dc.date.accessioned2019-08-27T08:15:09Z
dc.date.available2019-08-27T08:15:09Z
dc.date.issued2007
dc.description.abstractThe vision of assistance systems is to use machines not merely as tools but as intelligent assistants with which humans can solve their tasks cooperatively. The approach considered below is to enhance the required machine-human interaction by machine learning strategies. In order to enable an analytical study of the relevant general learning tasks and techniques, different formal learning models are compared and related to one another. The capabilities of the corresponding learning algorithms are illustrated and discussed within the framework of prototypical applications.en
dc.identifier.isbn3-88579-401-4
dc.identifier.pissn1617-5470
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/24902
dc.language.isoen
dc.publisherGesellschaft für Informatik e. V.
dc.relation.ispartofMarktplatz Internet: Von e-Learning bis e-Payment, 13. Leipziger Informatik-Tage (LIT 2005)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-73
dc.titleAlgorithmic Learning: Formal models and prototypical applicationsen
dc.typeText/Conference Paper
gi.citation.endPage80
gi.citation.publisherPlaceBonn
gi.citation.startPage57
gi.conference.date21.-23. September 2007
gi.conference.locationLeipzig
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GI-Proceedings.72-3.pdf
Größe:
335.81 KB
Format:
Adobe Portable Document Format