Logo des Repositoriums
 
Konferenzbeitrag

Comparison of Classifiers for Eye-Tracking Data

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2024

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

This paper delves into the initial stages of data analysis, focusing on the classification of eye-tracking data. Six machine learning algorithms, namely XGBoost, Random Forest, Naive Bayes, Logistic Regression, Gradient Boosting Machines, and Neural Networks, were employed to predict cheating behavior based on a dataset comprising records from 25 students. Their performance was evaluated using metrics such as accuracy, precision, recall, F1 score, confusion matrix, and feature importance. Results indicate that Random Forest and its optimized version exhibit balanced performance, making them promising candidates for cheating prediction. The overarching research project investigates academic misconduct in the realm of online assessments, seeking to comprehend the behaviors and methodologies involved. An eye-tracking experiment was conducted to gain deeper insights into the timing and mannerisms of students engaging in academic misconduct.

Beschreibung

Landes, Jennifer; Köppl, Sonja; Klettke, Meike (2024): Comparison of Classifiers for Eye-Tracking Data. INFORMATIK 2024. DOI: 10.18420/inf2024_126. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-746-3. pp. 1449-1462. Data Science Projekte: Von der Wissenschaft bis zur Anwendung. Wiesbaden. 24.-26. September 2024

Zitierform

Tags