Logo des Repositoriums
 

Detection of snow-coverage on PV-modules with images based on CNN-techniques

dc.contributor.authorHepp, Dennis
dc.contributor.authorHempelmann, Sebastian
dc.contributor.authorBehrens, Grit
dc.contributor.authorFriedrich, Werner
dc.contributor.editorWohlgemuth, Volker
dc.contributor.editorNaumann, Stefan
dc.contributor.editorArndt, Hans-Knud
dc.contributor.editorBehrens, Grit
dc.contributor.editorHöb, Maximilian
dc.date.accessioned2022-09-19T09:20:49Z
dc.date.available2022-09-19T09:20:49Z
dc.date.issued2022
dc.description.abstractThe transition from fossil fuels to renewable energy is considered as very meaningful to mitigate climate change. To integrate weather-dependent energies firmly into the power grid, a forecast of the energy yield is very important. This paper is about renewable energy generation by photovoltaic (PV) systems. The yield of PV-systems depends not only on weather conditions, but in wintertime also on the additional factor “snow cover”. The aim of this work is to detect snow cover on photovoltaic plants to support the energy yield forecast. For this purpose, images of a PV-plant with and without snow cover are used for feature extraction and then analyzed by using a convolutional neural network (CNN).en
dc.identifier.isbn978-3-88579-722-7
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39404
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofEnviroInfo 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-328
dc.subjectconvolutional neural network
dc.subjectmachine learning
dc.subjectpython
dc.subjectimage recognition
dc.subjectsnowdetection
dc.subjectphotovoltaic
dc.titleDetection of snow-coverage on PV-modules with images based on CNN-techniquesen
dc.typeText/Conference Paper
gi.citation.publisherPlaceBonn
gi.citation.startPage123
gi.conference.date26.-30- September 2022
gi.conference.locationHamburg

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
EnviroInfo2022_ShortPaper_47.pdf
Größe:
833.84 KB
Format:
Adobe Portable Document Format