Logo des Repositoriums
 
Konferenzbeitrag

Mortalitätsschätzungen in ungleichaltrigen Fichtenwäldern mit Hilfe Neuronaler Netze

Vorschaubild nicht verfügbar

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

1999

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Metropolis

Zusammenfassung

Within forest growth modeling it is understood that individual tree mortality can be captured realistically by relating the average rate of mortality to a few reliable and measurable size or site characteristics using a LOGIT model. In this paper we describe the application of neuronal networks adhering to the unsupervised learning paradigm to predict individual tree mortality. Using the large and representative Norway spruce data sample from the Austrian National Forest Inventory, we train different types of neural network architectures, namely Multi-Layer Perceptron, Cascade Correlation, and Learning Vector Quantization. For training, we use the following learning rules: Error Backpropagation, Resilient Propagation, and Scaled Conjugate Gradient. With an independent data set we evaluate the neural network types to predict individual tree mortality.

Beschreibung

Hasenauer, Hubert; Merkl, Dieter (1999): Mortalitätsschätzungen in ungleichaltrigen Fichtenwäldern mit Hilfe Neuronaler Netze. Umweltinformatik ’99 - Umweltinformatik zwischen Theorie und Industrieanwendung. Marburg: Metropolis. Wald und Bodenschutz. Magdeburg. 1999

Schlagwörter

Zitierform

DOI

Tags