Zeitschriftenartikel
Reservoir Computing with Output Feedback
Vorschaubild nicht verfügbar
Volltext URI
Dokumententyp
Text/Journal Article
Zusatzinformation
Datum
2012
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Springer
Zusammenfassung
This thesis presents a dynamical system approach to learning forward and inverse models in associative recurrent neural networks. Ambiguous inverse models are represented by multi-stable dynamics. Random projection networks, i.e. reservoirs, together with a rigorous regularization methodology enable robust and efficient training of multi-stable dynamics with application to movement control in robotics.