Logo des Repositoriums
 

Reservoir Computing with Output Feedback

dc.contributor.authorReinhart, René Felix
dc.date.accessioned2018-01-08T09:16:10Z
dc.date.available2018-01-08T09:16:10Z
dc.date.issued2012
dc.description.abstractThis thesis presents a dynamical system approach to learning forward and inverse models in associative recurrent neural networks. Ambiguous inverse models are represented by multi-stable dynamics. Random projection networks, i.e. reservoirs, together with a rigorous regularization methodology enable robust and efficient training of multi-stable dynamics with application to movement control in robotics.
dc.identifier.pissn1610-1987
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/11323
dc.publisherSpringer
dc.relation.ispartofKI - Künstliche Intelligenz: Vol. 26, No. 4
dc.relation.ispartofseriesKI - Künstliche Intelligenz
dc.subjectDynamical systems
dc.subjectMachine learning
dc.titleReservoir Computing with Output Feedback
dc.typeText/Journal Article
gi.citation.endPage416
gi.citation.startPage415

Dateien