Logo des Repositoriums
 
Textdokument

Blueprint for a Production-Ready Information Retrieval System based on Multi-Modal Embeddings

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2021

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

Deep Learning models for mapping documents from different domains, e.g., text, images, and audio, into a common vector space, enable a seamless information retrieval between the different domains and, thus, significantly improve the user experience of many expert tools. Despite various models for multi-modal mappings presented in scientific literature, the implementation and integration remain a challenge within the industry, especially for small or medium-sized companies. Reasons are, that developing such retrieval systems for production use-cases is a non-trivial task, requiring scalable, reliable, and cost-efficient infrastructure, services as well as adequate Deep Learning models. We present a generic and flexible blueprint architecture, targeting the development of a production-ready image-text retrieval search system using Kubernetes, MLflow, Elasticsearch, and integrating state-of-the-art Deep Learning models.

Beschreibung

Ebert, André; Apel, Anika; Chodyko, Piotr; Hiroyasu, Kyle; Ismali, Festina; Koo, Hyein; Kronburger, Julia; Pesch, Robert (2021): Blueprint for a Production-Ready Information Retrieval System based on Multi-Modal Embeddings. INFORMATIK 2021. DOI: 10.18420/informatik2021-095. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-708-1. pp. 1165-1175. Workshop: Künstliche Intelligenz für kleine und mittlere Unternehmen (KI-KMU 2021). Berlin. 27. September - 1. Oktober 2021

Zitierform

Tags