Blueprint for a Production-Ready Information Retrieval System based on Multi-Modal Embeddings
dc.contributor.author | Ebert, André | |
dc.contributor.author | Apel, Anika | |
dc.contributor.author | Chodyko, Piotr | |
dc.contributor.author | Hiroyasu, Kyle | |
dc.contributor.author | Ismali, Festina | |
dc.contributor.author | Koo, Hyein | |
dc.contributor.author | Kronburger, Julia | |
dc.contributor.author | Pesch, Robert | |
dc.date.accessioned | 2021-12-14T10:57:58Z | |
dc.date.available | 2021-12-14T10:57:58Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Deep Learning models for mapping documents from different domains, e.g., text, images, and audio, into a common vector space, enable a seamless information retrieval between the different domains and, thus, significantly improve the user experience of many expert tools. Despite various models for multi-modal mappings presented in scientific literature, the implementation and integration remain a challenge within the industry, especially for small or medium-sized companies. Reasons are, that developing such retrieval systems for production use-cases is a non-trivial task, requiring scalable, reliable, and cost-efficient infrastructure, services as well as adequate Deep Learning models. We present a generic and flexible blueprint architecture, targeting the development of a production-ready image-text retrieval search system using Kubernetes, MLflow, Elasticsearch, and integrating state-of-the-art Deep Learning models. | en |
dc.identifier.doi | 10.18420/informatik2021-095 | |
dc.identifier.isbn | 978-3-88579-708-1 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/37765 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik, Bonn | |
dc.relation.ispartof | INFORMATIK 2021 | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-314 | |
dc.subject | Information Retrieval | |
dc.subject | Image-to-Text | |
dc.subject | Multi-Modal Embeddings | |
dc.subject | Deep Learning | |
dc.subject | Artificial Intelligence | |
dc.subject | Data-Science to Production | |
dc.title | Blueprint for a Production-Ready Information Retrieval System based on Multi-Modal Embeddings | en |
gi.citation.endPage | 1175 | |
gi.citation.startPage | 1165 | |
gi.conference.date | 27. September - 1. Oktober 2021 | |
gi.conference.location | Berlin | |
gi.conference.sessiontitle | Workshop: Künstliche Intelligenz für kleine und mittlere Unternehmen (KI-KMU 2021) |
Dateien
Originalbündel
1 - 1 von 1