Logo des Repositoriums
 

Enhancing Automotive AUTOSAR Environments with Artificial DNA

dc.contributor.authorHutter, Eric
dc.contributor.editorDraude, Claude
dc.contributor.editorLange, Martin
dc.contributor.editorSick, Bernhard
dc.date.accessioned2019-08-27T13:00:24Z
dc.date.available2019-08-27T13:00:24Z
dc.date.issued2019
dc.description.abstractIn order to cope with the ever-increasing complexity of automotive embededded systems, bio-inspired techniques can be employed. We propose an organic concept based on artificial DNA (ADNA) and an artificial hormone system (AHS) that can be used to realize highly reliable, robust and flexible automotive systems. However, computational resources and communication bandwidth are often limited in automotive environments. Additionally, the AUTOSAR Classic Platform as the de facto standard for automotive Electronic Control Units (ECUs) does not support dynamic system behavior. Nevertheless, in this paper we show that the dynamic concept of ADNA and AHS can be successfully applied to a statically configured Classic AUTOSAR environment with moderate computational resource usage. While the communication via CAN bus (Controller Area Network) imposes some limitations, we propose ways of resolving them.en
dc.identifier.doi10.18420/inf2019_ws51
dc.identifier.isbn978-3-88579-689-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/25087
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft (Workshop-Beiträge)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-295
dc.subjectArtificial DNA
dc.subjectArtificial Hormone System
dc.subjectSelf-organization
dc.subjectAutomotive
dc.subjectCAN Bus
dc.subjectAUTOSAR
dc.titleEnhancing Automotive AUTOSAR Environments with Artificial DNAen
dc.typeText/Conference Paper
gi.citation.endPage482
gi.citation.publisherPlaceBonn
gi.citation.startPage469
gi.conference.date23.-26. September 2019
gi.conference.locationKassel
gi.conference.sessiontitleOrganic Computing Doctoral Dissertation Colloquium

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper11_01.pdf
Größe:
391.92 KB
Format:
Adobe Portable Document Format