Enhancing Automotive AUTOSAR Environments with Artificial DNA
dc.contributor.author | Hutter, Eric | |
dc.contributor.editor | Draude, Claude | |
dc.contributor.editor | Lange, Martin | |
dc.contributor.editor | Sick, Bernhard | |
dc.date.accessioned | 2019-08-27T13:00:24Z | |
dc.date.available | 2019-08-27T13:00:24Z | |
dc.date.issued | 2019 | |
dc.description.abstract | In order to cope with the ever-increasing complexity of automotive embededded systems, bio-inspired techniques can be employed. We propose an organic concept based on artificial DNA (ADNA) and an artificial hormone system (AHS) that can be used to realize highly reliable, robust and flexible automotive systems. However, computational resources and communication bandwidth are often limited in automotive environments. Additionally, the AUTOSAR Classic Platform as the de facto standard for automotive Electronic Control Units (ECUs) does not support dynamic system behavior. Nevertheless, in this paper we show that the dynamic concept of ADNA and AHS can be successfully applied to a statically configured Classic AUTOSAR environment with moderate computational resource usage. While the communication via CAN bus (Controller Area Network) imposes some limitations, we propose ways of resolving them. | en |
dc.identifier.doi | 10.18420/inf2019_ws51 | |
dc.identifier.isbn | 978-3-88579-689-3 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/25087 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik e.V. | |
dc.relation.ispartof | INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft (Workshop-Beiträge) | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-295 | |
dc.subject | Artificial DNA | |
dc.subject | Artificial Hormone System | |
dc.subject | Self-organization | |
dc.subject | Automotive | |
dc.subject | CAN Bus | |
dc.subject | AUTOSAR | |
dc.title | Enhancing Automotive AUTOSAR Environments with Artificial DNA | en |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 482 | |
gi.citation.publisherPlace | Bonn | |
gi.citation.startPage | 469 | |
gi.conference.date | 23.-26. September 2019 | |
gi.conference.location | Kassel | |
gi.conference.sessiontitle | Organic Computing Doctoral Dissertation Colloquium |
Dateien
Originalbündel
1 - 1 von 1