Logo des Repositoriums
 

Improvement of automated social media sentiment analysis methods - a context-based approach

dc.contributor.authorDebeyem Dennis
dc.contributor.authorEder, Tim
dc.contributor.authorGuigas, Paul Vincent
dc.contributor.authorSchuberth, Viktoria
dc.contributor.editorBecker, Michael
dc.date.accessioned2019-10-14T12:09:10Z
dc.date.available2019-10-14T12:09:10Z
dc.date.issued2019
dc.description.abstractThe sentiment analysis of social media data increasingly gains importance in business and research. But still, topical algorithms cope with problems, since it is reasonably manageable to extract the tonality of a social media post, but not the authors attitude towards a given topic. However, in most cases, this is the relevant information users of social media analysis tools are looking for. To tackle this problem, we propose a context-based algorithm that not only focuses on isolated postings, but also takes the authorsŠ earlier postings and their interactions with other usersŠ posts into account to derive their actual opinion on a subject. To evaluate this approach, we implemented a test system and compared the algorithmŠs results to manually assessed sentiments.en
dc.identifier.isbn978-3-88579-449-3
dc.identifier.pissn1614-3213
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/28995
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSKILL 2019 - Studierendenkonferenz Informatik
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Seminars, Volume S-15
dc.subjectsentiment analysis
dc.subjectsocial media analysis
dc.subjectopinion mining
dc.titleImprovement of automated social media sentiment analysis methods - a context-based approachen
dc.typeText/Conference Paper
gi.citation.endPage44
gi.citation.publisherPlaceBonn
gi.citation.startPage33
gi.conference.date25.-26. September 2019
gi.conference.locationKassel
gi.conference.sessiontitleNatural Language Processing

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
SKILL2019-03.pdf
Größe:
257.3 KB
Format:
Adobe Portable Document Format