Logo des Repositoriums
 

A multi-label text classifier approach for understanding electronic word-of-mouth of restaurants on Google Maps

dc.contributor.authorHering, Frederik
dc.contributor.editorKlein, Maike
dc.contributor.editorKrupka, Daniel
dc.contributor.editorWinter, Cornelia
dc.contributor.editorGergeleit, Martin
dc.contributor.editorMartin, Ludger
dc.date.accessioned2024-10-21T18:24:15Z
dc.date.available2024-10-21T18:24:15Z
dc.date.issued2024
dc.description.abstractRestaurant owners need to understand and react to customer feedback to remain competitive in the long term. Customers provide essential feedback electronically via online platforms such as Google Maps. To better understand customer feedback, we developed a multi-label text classifier to classify feedback into categories of aspects customers criticize and comment on. Since restaurants, like many small and medium-sized enterprises, do not have the resources to maintain computationally intensive deep learning architectures, we present a simple knowledge distillation approach in this paper. On the test dataset, our approach performs better than a BERT model at a much smaller model size and with significantly better inference time. These results provide a novel approach to understanding electronic word of mouth for small and medium-sized enterprises.en
dc.identifier.doi10.18420/inf2024_144
dc.identifier.isbn978-3-88579-746-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/45119
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2024
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-352
dc.subjectElectronic word-of-mouth
dc.subjectMulti-label text classification
dc.subjectKnowledge distillation
dc.subjectGoogle Maps reviews
dc.titleA multi-label text classifier approach for understanding electronic word-of-mouth of restaurants on Google Mapsen
dc.typeText/Conference Paper
gi.citation.endPage1674
gi.citation.publisherPlaceBonn
gi.citation.startPage1663
gi.conference.date24.-26. September 2024
gi.conference.locationWiesbaden
gi.conference.sessiontitleKünstliche Intelligenz im Mittelstand / KI-KMU2024

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
Hering_A_multi-label_text_classifier_approach.pdf
Größe:
400.93 KB
Format:
Adobe Portable Document Format