Logo des Repositoriums
 

Challenges of Network Traffic Classification Using Deep Learning in Virtual Networks

dc.contributor.authorSpiekermann,Daniel
dc.contributor.authorKeller,Jörg
dc.contributor.editorDemmler, Daniel
dc.contributor.editorKrupka, Daniel
dc.contributor.editorFederrath, Hannes
dc.date.accessioned2022-09-28T17:10:51Z
dc.date.available2022-09-28T17:10:51Z
dc.date.issued2022
dc.description.abstractThe increasing number of network-based attacks like denial-of-service and ransomware have become a serious threat in nowadays digital infrastructures. Therefore, the monitoring of network communications and the classification of network packets is a critical process when protecting the environment. Modern techniques like deep learning aim to help the providers when detecting anomalies or attacks by learning details extracted from a network packet or a flow of packets. Most of these models are trained in networks without any kind of virtualisation, especially network virtualisation overlay environments are not investigated in detail. In this paper, we analyse the classification rate of a Convolutional Neural Network (CNN) faced with encapsulated packets. We evaluate this approach with a proof-of-concept based on a binary classification of a self-curated data-set.en
dc.identifier.doi10.18420/inf2022_08
dc.identifier.isbn978-3-88579-720-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39583
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-326
dc.subjectvirtual networks
dc.subjectnetwork virtualisation overlay
dc.subjectdeep learning
dc.subjectneural networks
dc.subjectnetwork traffic classification
dc.titleChallenges of Network Traffic Classification Using Deep Learning in Virtual Networksen
gi.citation.endPage108
gi.citation.startPage99
gi.conference.date26.-30. September 2022
gi.conference.locationHamburg
gi.conference.sessiontitleInternational Workshop On Digital Forensics (IWDF)

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
iwdf_08.pdf
Größe:
247.77 KB
Format:
Adobe Portable Document Format