Logo des Repositoriums
 
Zeitschriftenartikel

Admire LVQ—Adaptive Distance Measures in Relevance Learning Vector Quantization

Vorschaubild nicht verfügbar

Volltext URI

Dokumententyp

Text/Journal Article

Zusatzinformation

Datum

2012

Autor:innen

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Springer

Zusammenfassung

The extension of Learning Vector Quantization by Matrix Relevance Learning is presented and discussed. The basic concept, essential properties, and several modifications of the scheme are outlined. A particularly successful application in the context of tumor classification highlights the usefulness and interpretability of the method in practical contexts. The development and putting forward of Matrix Relevance Learning Vector Quantization was, to a large extent, pursued in the frame of the project Adaptive Distance Measures in Relevance Learning Vector Quantization—Admire LVQ, funded through the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) under project code 612.066.620, from 2007 to 2011.

Beschreibung

Biehl, Michael (2012): Admire LVQ—Adaptive Distance Measures in Relevance Learning Vector Quantization. KI - Künstliche Intelligenz: Vol. 26, No. 4. Springer. PISSN: 1610-1987. pp. 391-395

Zitierform

DOI

Tags