Logo des Repositoriums
 

Admire LVQ—Adaptive Distance Measures in Relevance Learning Vector Quantization

dc.contributor.authorBiehl, Michael
dc.date.accessioned2018-01-08T09:16:10Z
dc.date.available2018-01-08T09:16:10Z
dc.date.issued2012
dc.description.abstractThe extension of Learning Vector Quantization by Matrix Relevance Learning is presented and discussed. The basic concept, essential properties, and several modifications of the scheme are outlined. A particularly successful application in the context of tumor classification highlights the usefulness and interpretability of the method in practical contexts. The development and putting forward of Matrix Relevance Learning Vector Quantization was, to a large extent, pursued in the frame of the project Adaptive Distance Measures in Relevance Learning Vector Quantization—Admire LVQ, funded through the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) under project code 612.066.620, from 2007 to 2011.
dc.identifier.pissn1610-1987
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/11327
dc.publisherSpringer
dc.relation.ispartofKI - Künstliche Intelligenz: Vol. 26, No. 4
dc.relation.ispartofseriesKI - Künstliche Intelligenz
dc.subjectAdaptive distances
dc.subjectMachine learning
dc.subjectPrototype-based classification
dc.subjectSimilarity-based clustering
dc.titleAdmire LVQ—Adaptive Distance Measures in Relevance Learning Vector Quantization
dc.typeText/Journal Article
gi.citation.endPage395
gi.citation.startPage391

Dateien