Logo des Repositoriums
 

Towards Fine-Grained Sensor-Based Probabilistic Individual Air Pollution Exposure Prediction using Wind Information

dc.contributor.authorTremper, Paul
dc.contributor.authorRiedel, Till
dc.contributor.editorWohlgemuth, Volker
dc.contributor.editorKranzlmüller, Dieter
dc.contributor.editorHöb, Maximilian
dc.date.accessioned2023-12-15T09:22:24Z
dc.date.available2023-12-15T09:22:24Z
dc.date.issued2023
dc.description.abstractThe estimation of pollutant exposure is highly dependent on the spatial and temporal resolution of the underlying model. This work presents a street-level Gaussian Process Regression model for urban air quality that uses a novel covariance kernel based on physical considerations to process wind information. This model can be driven by information from observations from low-cost sensor networks. We present the model, including the construction of the wind angle kernel, and discuss the inconclusive evaluation to date, the current challenges, and the way forward.en
dc.identifier.doi10.18420/env2023-020
dc.identifier.isbn978-3-88579-736-4
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/43341
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofEnviroInfo 2023
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-342
dc.subjectGaussian Process Regression; kriging; air quality; interpolation; wind direction; prediction
dc.titleTowards Fine-Grained Sensor-Based Probabilistic Individual Air Pollution Exposure Prediction using Wind Informationen
dc.typeText/Conference Paper
gi.citation.endPage229
gi.citation.publisherPlaceBonn
gi.citation.startPage219
gi.conference.date11.-13. Oktober 2023
gi.conference.locationGarching, Germany
gi.conference.reviewfull
gi.conference.sessiontitleEnvironmental Impact Assessment and Optimization

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GI_Proceedings_342_Digital_Paper_20.pdf
Größe:
386.03 KB
Format:
Adobe Portable Document Format