Logo des Repositoriums
 

Taking a HINT on Industrial Anomaly Detection

dc.contributor.authorHöllig, Jacqueline
dc.contributor.authorGrimm, Florian
dc.contributor.authorKiefer, Daniel
dc.contributor.authorThoma, Steffen
dc.contributor.editorKlein, Maike
dc.contributor.editorKrupka, Daniel
dc.contributor.editorWinter, Cornelia
dc.contributor.editorGergeleit, Martin
dc.contributor.editorMartin, Ludger
dc.date.accessioned2024-10-21T18:24:15Z
dc.date.available2024-10-21T18:24:15Z
dc.date.issued2024
dc.description.abstractDetection of defective parts and tools is essential in large-scale industrial manufacturing, playing a vital role in predictive maintenance, quality assurance, and safety hazard minimization. While traditionally performed by humans, the automation of visual anomaly detection using neural networks has gained prominence due to their increasing performance capabilities. However, deep learning models require extensive data for training, while acquiring annotated data is both costly and labor-intensive, especially for defect variations in industrial scenarios. Unsupervised methods, trained without labels or annotations, offer a potential solution but struggle to distinguish true anomalies from irrelevant impurities. To address the limitations of data dependency and spurious correlations in deep learning models, we introduce a demonstrator utilizing Human Importance-aware Network Tuning (HINT) to incorporate domain knowledge during training, and Explainable Artificial Intelligence (XAI) to provide insights into the model’s decision-making process.en
dc.identifier.doi10.18420/inf2024_145
dc.identifier.isbn978-3-88579-746-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/45120
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2024
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-352
dc.subjectIndustrial Anomaly Detection
dc.subjectExplainable Interactive Machine Learning
dc.subjectHuman-in-the-Loop
dc.titleTaking a HINT on Industrial Anomaly Detectionen
dc.typeText/Conference Paper
gi.citation.endPage1680
gi.citation.publisherPlaceBonn
gi.citation.startPage1675
gi.conference.date24.-26. September 2024
gi.conference.locationWiesbaden
gi.conference.sessiontitleKünstliche Intelligenz im Mittelstand / KI-KMU2024

Dateien

Originalbündel
1 - 1 von 1
Vorschaubild nicht verfügbar
Name:
Hoellig_et_al_Taking_a_HINT.pdf
Größe:
1.21 MB
Format:
Adobe Portable Document Format