Logo des Repositoriums
 

Testing Balancedness of ML Algorithms

dc.contributor.authorSharma, Arnab
dc.contributor.authorWehrheim, Heike
dc.contributor.editorBecker, Steffen
dc.contributor.editorBogicevic, Ivan
dc.contributor.editorHerzwurm, Georg
dc.contributor.editorWagner, Stefan
dc.date.accessioned2019-03-14T11:49:21Z
dc.date.available2019-03-14T11:49:21Z
dc.date.issued2019
dc.description.abstractWith the increased application of machine learning (ML) algorithms to decision-making processes, the question of fairness of such algorithms came into the focus. Fairness testing aims at checking whether a classifier as “learned” by an ML algorithm on some training data is biased in the sense of discriminating against some of the attributes (e.g. gender or age). Fairness testing thus targets the prediction phase in ML, not the learning phase. In our approach, we investigate fairness for the learning phase. Our definition of fairness is based on the idea that the learner should treat all data in the training set equally, disregarding issues like names or orderings of features or orderings of data instances. We term this property balanced data usage. We have developed a (metamorphic) testing approach called TiLe for checking balanced data usage and report on some experiments of using TiLe to check classifiers from the scikit-learn library for balancedness.en
dc.identifier.doi10.18420/se2019-48
dc.identifier.isbn978-3-88579-686-2
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/20909
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftware Engineering and Software Management 2019
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-292
dc.titleTesting Balancedness of ML Algorithmsen
dc.typeText/Conference Paper
gi.citation.endPage158
gi.citation.publisherPlaceBonn
gi.citation.startPage157
gi.conference.date18.-22. Februar 2019
gi.conference.locationStuttgart, Germany
gi.conference.sessiontitleSession 15: Erklärbare Software

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
48.pdf
Größe:
447.06 KB
Format:
Adobe Portable Document Format