Logo des Repositoriums
 

Henshin: A Model Transformation Language and its Use for Search-Based Model Optimisation in MDEOptimiser

dc.contributor.authorStrüber, Daniel
dc.contributor.authorBurdusel, Alexandru
dc.contributor.authorJohn, Stefan
dc.contributor.authorZschaler, Steffen
dc.contributor.editorSchaefer, Ina
dc.contributor.editorKaragiannis, Dimitris
dc.contributor.editorVogelsang, Andreas
dc.contributor.editorMéndez, Daniel
dc.contributor.editorSeidl, Christoph
dc.date.accessioned2018-01-23T21:43:22Z
dc.date.available2018-01-23T21:43:22Z
dc.date.issued2018
dc.description.abstractThis tutorial presents Henshin, a versatile model transformation language increasingly used in academic and industrial applications. Henshin is based on the paradigm of graph transformation and provides a comprehensive tool set that supports largely declarative transformation specifications as well as various formal analyses. We present the application of Henshin in a search-based model optimisation scenario, where the goal is to find an optimal model regarding a given fitness function. Using Henshin, we specify evolutionary operators for MDEOptimiser, a novel search-based model optimisation tool.en
dc.identifier.isbn978-3-88579-674-9
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/14948
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofModellierung 2018
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-280
dc.subjectmodel transformation
dc.subjectgraph transformation
dc.subjectmodel optimisation
dc.subjectevolutionary optimisation
dc.titleHenshin: A Model Transformation Language and its Use for Search-Based Model Optimisation in MDEOptimiseren
dc.typeText/Conference Paper
gi.citation.endPage300
gi.citation.publisherPlaceBonn
gi.citation.startPage299
gi.conference.date21.-23. Februar 2018
gi.conference.locationBraunschweig
gi.conference.sessiontitleTutorials

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
modellierung2018-tut-02.pdf
Größe:
50.78 KB
Format:
Adobe Portable Document Format