Logo des Repositoriums
 
Konferenzbeitrag

Reliable Generation of Formal Specifications using Large Language Models

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2024

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Recent pre-trained Large Language Models (LLMs) have demonstrated promising Natural Language Processing (NLP) and code generation abilities. However, the intrinsically unreliable output due to the probabilistic nature of LLMs imposes a major challenge as validity can generally not be guaranteed, making subsequent processing prone to errors. When LLMs are used to translate natural-language specifications to formal specifications, this limitation becomes evident. We propose a framework involving prompting and algorithmic post-processing that continuously interacts with the LLM to ensure strict syntactic validity and reasonable content correctness. Furthermore, we introduce a use-case in the domain of engineering processes for railway infrastructure and demonstrate that our approach is sufficiently mature for implementation in an industrial environment.

Beschreibung

Kogler, Philipp; Falkner, Andreas; Sperl, Simon (2024): Reliable Generation of Formal Specifications using Large Language Models. SE 2024 - Companion. DOI: 10.18420/sw2024-ws_10. Gesellschaft für Informatik e.V.. pp. 141-153. GENSE. Linz. 26.- 27. Februar

Zitierform

Tags