Background Modeling Using Adaptive Cluster Density Estimation for Automatic Human Detection
dc.contributor.author | Bhaskar, Harish | |
dc.contributor.author | Mihaylova, Lyudmila | |
dc.contributor.author | Maskell, Simon | |
dc.contributor.editor | Herzog, Otthein | |
dc.contributor.editor | Rödiger, Karl-Heinz | |
dc.contributor.editor | Ronthaler, Marc | |
dc.contributor.editor | Koschke, Rainer | |
dc.date.accessioned | 2019-05-15T09:04:49Z | |
dc.date.available | 2019-05-15T09:04:49Z | |
dc.date.issued | 2007 | |
dc.description.abstract | Detection is an inherent part of every advanced automatic tracking system. In this work we focus on automatic detection of humans by enhanced background subtraction. Background subtraction (BS) refers to the process of segmenting moving regions from video sensor data and is usually performed at pixel level. In its standard form this technique involves building a model of the background and extracting regions of the foreground. In this paper, we propose a cluster-based BS technique using a mixture of Gaussians. An adaptive mechanism is developed that allows automated learning of the model parameters. The efficiency of the designed technique is demonstrated in comparison with a pixel-based BS [ZdH06]. | en |
dc.identifier.isbn | 978-3-88579-206-1 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/22466 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik e. V. | |
dc.relation.ispartof | Informatik 2007 – Informatik trifft Logistik – Band 2 | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-110 | |
dc.title | Background Modeling Using Adaptive Cluster Density Estimation for Automatic Human Detection | en |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 134 | |
gi.citation.publisherPlace | Bonn | |
gi.citation.startPage | 130 | |
gi.conference.date | 24.-27. September 2007 | |
gi.conference.location | Bremen | |
gi.conference.sessiontitle | Regular Research Papers |
Dateien
Originalbündel
1 - 1 von 1