Logo des Repositoriums
 

Background Modeling Using Adaptive Cluster Density Estimation for Automatic Human Detection

dc.contributor.authorBhaskar, Harish
dc.contributor.authorMihaylova, Lyudmila
dc.contributor.authorMaskell, Simon
dc.contributor.editorHerzog, Otthein
dc.contributor.editorRödiger, Karl-Heinz
dc.contributor.editorRonthaler, Marc
dc.contributor.editorKoschke, Rainer
dc.date.accessioned2019-05-15T09:04:49Z
dc.date.available2019-05-15T09:04:49Z
dc.date.issued2007
dc.description.abstractDetection is an inherent part of every advanced automatic tracking system. In this work we focus on automatic detection of humans by enhanced background subtraction. Background subtraction (BS) refers to the process of segmenting moving regions from video sensor data and is usually performed at pixel level. In its standard form this technique involves building a model of the background and extracting regions of the foreground. In this paper, we propose a cluster-based BS technique using a mixture of Gaussians. An adaptive mechanism is developed that allows automated learning of the model parameters. The efficiency of the designed technique is demonstrated in comparison with a pixel-based BS [ZdH06].en
dc.identifier.isbn978-3-88579-206-1
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/22466
dc.language.isoen
dc.publisherGesellschaft für Informatik e. V.
dc.relation.ispartofInformatik 2007 – Informatik trifft Logistik – Band 2
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-110
dc.titleBackground Modeling Using Adaptive Cluster Density Estimation for Automatic Human Detectionen
dc.typeText/Conference Paper
gi.citation.endPage134
gi.citation.publisherPlaceBonn
gi.citation.startPage130
gi.conference.date24.-27. September 2007
gi.conference.locationBremen
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
130.pdf
Größe:
938.01 KB
Format:
Adobe Portable Document Format