Logo des Repositoriums
 

Uncertainty visualization: Fundamentals and recent developments

dc.contributor.authorHägele, David
dc.contributor.authorSchulz, Christoph
dc.contributor.authorBeschle, Cedric
dc.contributor.authorBooth, Hannah
dc.contributor.authorButt, Miriam
dc.contributor.authorBarth, Andrea
dc.contributor.authorDeussen, Oliver
dc.contributor.authorWeiskopf, Daniel
dc.date.accessioned2022-11-22T09:55:28Z
dc.date.available2022-11-22T09:55:28Z
dc.date.issued2022
dc.description.abstractThis paper provides a brief overview of uncertainty visualization along with some fundamental considerations on uncertainty propagation and modeling. Starting from the visualization pipeline, we discuss how the different stages along this pipeline can be affected by uncertainty and how they can deal with this and propagate uncertainty information to subsequent processing steps. We illustrate recent advances in the field with a number of examples from a wide range of applications: uncertainty visualization of hierarchical data, multivariate time series, stochastic partial differential equations, and data from linguistic annotation.en
dc.identifier.doi10.1515/itit-2022-0033
dc.identifier.pissn2196-7032
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39763
dc.language.isoen
dc.publisherDe Gruyter
dc.relation.ispartofit - Information Technology: Vol. 64, No. 4-5
dc.subjectUncertainty visualization
dc.subjectmultivariate data
dc.subjecthierarchical data
dc.subjectpartial differential equations
dc.subjectlinguistics
dc.titleUncertainty visualization: Fundamentals and recent developmentsen
dc.typeText/Journal Article
gi.citation.endPage132
gi.citation.publisherPlaceBerlin
gi.citation.startPage121
gi.conference.sessiontitleArticle

Dateien