Logo des Repositoriums
 
Konferenzbeitrag

Evaluating synthetic vs. real data generation for AI-based selective weeding

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2023

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Synthetic data has the potential to reduce the cost for ML training in agriculture but poses its own set of problems compared to real data acquisition. In this work, we present two methods of training data acquisition for the application of machine vision algorithms in the use case of selective weeding. Results from ML experiments suggest that current methods for generating synthetic data in the field of agriculture cannot fully replace real data but may greatly reduce the quantity of real data required for model training.

Beschreibung

Iqbal, Naeem; Bracke, Justus; Elmiger, Anton; Hameed, Hunaid; von Szadkowski, Kai (2023): Evaluating synthetic vs. real data generation for AI-based selective weeding. 43. GIL-Jahrestagung, Resiliente Agri-Food-Systeme. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-724-1. pp. 125-135. Osnabrück. 13.-14. Februar 2023

Zitierform

DOI

Tags